Dynamics of Measles Epidemics: Estimating Scaling of Transmission Rates Using a Time Series Sir Model

نویسندگان

  • OTTAR N. BJøRNSTAD
  • BÄRBEL F. FINKENSTÄDT
  • BRYAN T. GRENFELL
چکیده

Before the development of mass-vaccination campaigns, measles exhibited persistent fluctuations (endemic dynamics) in large British cities, and recurrent outbreaks (episodic dynamics) in smaller communities. The critical community size separating the two regimes was ;300 000–500 000. We develop a model, the TSIR (Time-series Susceptible–Infected–Recovered) model, that can capture both endemic cycles and episodic outbreaks in measles. The model includes the stochasticity inherent in the disease transmission (giving rise to a negative binomial conditional distribution) and random immigration. It is thus a doubly stochastic model for disease dynamics. It further includes seasonality in the transmission rates. All parameters of the model are estimated on the basis of time series data on reported cases and reconstructed susceptible numbers from a set of cities in England and Wales in the prevaccination era (1944–1966). The 60 cities analyzed span a size range from London (3.3 3 106 inhabitants) to Teignmouth (10 500 inhabitants). The dynamics of all cities fit the model well. Transmission rates scale with community size, as expected from dynamics adhering closely to frequency dependent transmission (‘‘true mass action’’). These rates are further found to reveal strong seasonal variation, corresponding to high transmission during school terms and lower transmission during the school holidays. The basic reproductive ratio, R0, is found to be invariant across the observed range of host community size, and the mean proportion of susceptible individuals also appears to be constant. Through the epidemic cycle, the susceptible population is kept within a 3% interval. The disease is, thus, efficient in ‘‘regulating’’ the susceptible population—even in small cities that undergo recurrent epidemics with frequent extinction of the disease agent. Recolonization is highly sensitive to the random immigration process. The initial phase of the epidemic is also stochastic (due to demographic stochasticity and random immigration). However, the epidemic is nearly ‘‘deterministic’’ through most of the growth and decline phase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decreasing stochasticity through enhanced seasonality in measles epidemics.

Seasonal changes in the environment are known to be important drivers of population dynamics, giving rise to sustained population cycles. However, it is often difficult to measure the strength and shape of seasonal forces affecting populations. In recent years, statistical time-series methods have been applied to the incidence records of childhood infectious diseases in an attempt to estimate s...

متن کامل

Determinants of periodicity in seasonally driven epidemics.

Seasonality strongly affects the transmission and spatio-temporal dynamics of many infectious diseases, and is often an important cause for their recurrence. However, there are many open questions regarding the intricate relationship between seasonality and the complex dynamics of infectious diseases it gives rise to. For example, in the analysis of long-term time-series of childhood diseases, ...

متن کامل

Dynamics of Measles Epidemics: Scaling Noise, Determinism, and Predictability with the Tsir Model

Two key linked questions in population dynamics are the relative importance of noise vs. density-dependent nonlinearities and the limits on temporal predictability of population abundance. We propose that childhood microparasitic infections, notably measles, provide an unusually suitable empirical and theoretical test bed for addressing these issues. We base our analysis on a new mechanistic ti...

متن کامل

Likelihood-based estimation of continuous-time epidemic models from time-series data: application to measles transmission in London.

We present a new statistical approach to analyse epidemic time-series data. A major difficulty for inference is that (i) the latent transmission process is partially observed and (ii) observed quantities are further aggregated temporally. We develop a data augmentation strategy to tackle these problems and introduce a diffusion process that mimics the susceptible-infectious-removed (SIR) epidem...

متن کامل

Theoretical Examination of the Pulse Vaccination Policy in the SIR Epidemic Model

Based on a theory of population dynamics in perturbed environments, it was hypothesized that measles epidemics can be more efficiently controlled by pulse vaccination, i.e., by a vaccination effort that is pulsed over time (11. Here, we analyze the rationale of the pulse vaccination strategy in the simple SIR epidemic model. We show that repeatedly vaccinating the susceptible population in a se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002